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Abstract The growth behavior of amorphous anodic films
on Ta–Nb solid solution alloys has been investigated over a
wide composition range at a constant current density of
50 Am−2 in 0.1 mol dm−3 ammonium pentaborate
electrolyte. The anodic films consist of two layers,
comprising a thin outer Nb2O5 layer and an inner layer
consisting of units of Ta2O5 and Nb2O5. The outer Nb2O5

layer is formed as a consequence of the faster outward
migration of Nb5+ ions, compared with Ta5+ ions, during
film growth under the high electric field. Their relative
migration rates are independent of the alloy composition.
The formation ratio, density, and capacitance of the films
show a linear relation to the alloy composition. The
susceptibility of the anodic films to field crystallization
during anodizing at constant voltage increases with increas-
ing niobium content of the alloy.
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Introduction

Anodizing of valve metals under appropriate conditions
enables the formation of barrier-type, usually amorphous,
oxides of uniform thickness at high current efficiency. The
anodic films have been extensively studied because of
interest in ionic transport during the growth of anodic
oxides under a high electric field [1–10] and for the
important practical applications of anodic films, particularly
in the capacitor industry [2, 11–19]. The anodic films are
usually contaminated with species derived from electrolyte
anions, and their depth distribution is controlled by the
transport number of cations and anions during film growth
and the mobility of incorporated electrolyte-derived species
[20, 21]. The concentration of the electrolyte-derived
species is usually less than 5 at.%, such that the control of
film structure and properties by incorporation of electrolyte-
derived species is limited.

The composition and properties of the anodic films can
be controlled widely by using solid solution binary alloys
as the substrate for anodizing. The change in band gap
energy of “mixed oxide” with composition is also of
fundamental interest [22]. Anodizing of tantalum alloys
has been investigated for improving the dielectric properties
of anodic Ta2O5, which is extensively used as a dielectric in
the capacitor industry, as well as for increased understand-
ing of the growth mechanism of anodic oxides [23–31].
Anodic Nb2O5 formed on niobium is also a promising
dielectric for capacitor applications due to the high
dielectric constant (εox=42) compared with anodic Ta2O5

(εox=27) [32, 33]. The higher permittivity of Nb2O5

suggests the possibility of achieving an increased capaci-
tance of anodic Ta2O5 by incorporation of units of Nb2O5.

Here, we have examined the formation of anodic films
on Ta–Nb alloys of various compositions in ammonium

S. Komiyama : E. Tsuji :Y. Aoki :H. Habazaki (*)
Division of Materials Chemistry, Faculty of Engineering,
Hokkaido University,
Sapporo, Hokkaido 060-8628, Japan
e-mail: habazaki@eng.hokudai.ac.jp

M. Santamaria : F. Di Quarto
Dipartimento di Ingegneria Chimica dei Processi e dei Materiali,
Università degli Studi di Palermo,
Viale delle Scienze,
90128 Palermo, Italy

P. Skeldon :G. E. Thompson
Corrosion and Protection Centre, School of Materials,
The University of Manchester,
Manchester M13 9PL, UK

J Solid State Electrochem (2012) 16:1595–1604
DOI 10.1007/s10008-011-1565-7



pentaborate electrolyte. The compositional dependence of
the growth behavior and film properties is examined. It is
known that both anodic Nb2O5 and Ta2O5 undergo field
crystallization during anodizing, particularly at higher
formation voltages and at higher electrolyte temperatures
[11, 12, 34, 35]. Since the field crystallization, which
introduces regions of imperfection with a petal-like mor-
phology, is detrimental for capacitor applications [36], the
compositional dependence of the susceptibility to field
crystallization of anodic films on the Ta–Nb alloys is also
examined.

Experimental

Ta–Nb alloys containing 12, 22, 43, 70, and 87 at.%
niobium, as well as tantalum and niobium metals, were
deposited by DC magnetron sputtering using a Vacuum
Products, SP-2C system. Targets of 99.9% pure tantalum of
100 mm in diameter, on which selected numbers of 99.9%
niobium disks of 20-mm diameter were placed symmetri-
cally and vice versa, were used for tantalum- and niobium-
rich alloys, respectively. The sputtering chamber was
evacuated to ~5×10−5 Pa and then sputtering was con-
ducted in 99.999% argon (~0.3 Pa) at 0.5 A for 600 s. The
substrates used for deposition of the layers were either glass
plates or aluminum foils that had been electropolished and
subsequently anodized to 200 V in 0.01 mol dm−3 ammonium
pentaborate. The latter substrates were used for transmission
electron microscopy observations and Rutherford backscat-
tering spectroscopy (RBS) analysis. During deposition, the
substrate holders were rotated around a central axis of
chamber as well as their own axis to generate alloy films of
uniform thickness and composition.

The deposited films were anodized to 80 V at a constant
current density of 50 Am−2 in stirred 0.1 mol dm−3

ammonium pentaborate aqueous electrolyte at 293 K using
a Keithley 2400 source meter. A two-electrode cell with a
platinum counter-electrode was used. The capacitance of
the anodic films was examined by AC impedance spec-
troscopy at 1.5 V vs Ag/AgCl with AC amplitude of 50 mV
(rms) over the frequency range of 1 Hz to 10 kHz in the
same electrolyte using a NF Corporation 5020 frequency
response analyzer and a Hokuto Denko HA501 potentio-
stat. For examination of field crystallization, the deposited
films were anodized at 100 V in 0.1 mol dm−3 ammonium
pentaborate aqueous electrolyte at 333 K for 3.6 ks. Prior to
anodizing, some of the deposited specimens were thermally
annealed at 523 K for 3.6 ks in air to accelerate the field
crystallization.

The structures of the deposited alloy films were
identified by X-ray diffraction (XRD) using a Rigaku
RINT-2000 system with Cu Kα radiation. Ultramicrotomed

sections, nominally ~10 nm in thickness, of the anodized
specimens were examined in a JEOL JEM-2000FX
transmission electron microscope operated at 200 kV. The
surfaces of the anodized specimens were observed using a
JEOL JSM-6500F field emission scanning electron micro-
scope (SEM). Compositions of the alloy and anodic films
were investigated by RBS, using 2.0 MeV He2+ ions
supplied by a tandem-type accelerator at Institute for
Materials Research, Tohoku University, with detection of
scattered ions at 170°. Data were analyzed using the RUMP
program. Further, depth profile analysis was conducted by
glow discharge optical emission spectroscopy (GDOES)
using a Jobin-Ybon 5000 instrument in an argon atmo-
sphere of 600 Pa by applying RF of 13.56 MHz and power
of 35 W. Light emissions of characteristic wavelengths
were monitored throughout the analysis with a sampling
time of 0.01 s to obtain elemental depth profiles. The
wavelengths of the spectral lines used were 302.017,
416.466, 249.678, and 130.217 nm for tantalum, niobium,
boron, and oxygen, respectively. The signals were detected
from a circular area of approximately 4 mm in diameter.
The XPS measurements of the thermally annealed speci-
mens were carried out with a JEOL JPS-9200 spectrometer
with a hemispherical energy analyzer and Mg Kα excita-
tion (1,253.6 eV). The pressure in the analysis chamber
during the XPS measurements was 1.0×10−7 Pa. The
spectra were recorded at a 90° take-off angle with 0.1 eV
step and 10 eV pass energy. The binding energy was
calibrated by using the C 1s peak at 285.0 eV as the
reference.

Results

Phases of the magnetron-sputtered Ta–Nb alloys

Figure 1 shows the XRD patterns of the magnetron-
sputtered Ta–Nb alloys with a range of compositions.
Tantalum and Ta–Nb alloys containing up to 22 at.%
niobium comprised the β-Ta phase, with a tetragonal
structure. The high-temperature β-Ta phase is often formed
in physical vapor deposition of tantalum films. Further
increase in the niobium content resulted in the formation of
a bcc phase. A slight shift in the peaks of each phase
occurred with change of the alloy composition. Since no
peaks of second phase are evident, the alloys appear to be
mainly single-phase solid solutions.

Characterization of anodic films

The deposited films were anodized at a constant current
density of 50 Am−2 to 80 V in 0.1 mol dm−3 ammonium
pentaborate electrolyte at 293 K. The cell voltage increased
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linearly with anodizing time, with the slope depending
upon the alloy composition. The slope changes linearly
with alloy composition from 1.92 Vs−1 for tantalum to
1.41 Vs−1 for niobium (Fig. 2a). Transmission electron
micrographs of ultramicrotomed sections of the specimens
anodized to 80 V (Fig. 3) reveal thickening of the anodic
films with increase in the niobium content in the alloy,
consistent with the longer time required for anodizing the
alloys with higher niobium contents. All the anodic films

are amorphous, regardless of alloy composition, as can be
seen from their relatively featureless appearances; an
example of a selected area diffraction pattern with diffuse
halo rings is shown for the anodic film grown on the Ta–
43 at.% Nb alloy (Fig. 3c). The formation ratios, k, of the
anodic films, determined from the film thicknesses and the
formation voltage, also change linearly with alloy compo-
sition from 1.56 nm V−1 for tantalum to 2.33 nm V−1 for
niobium (Fig. 2b). The values for tantalum and niobium are
in agreement with the reported ones [9].

The anodic films formed on the Ta–Nb alloys have a
two-layered nature, although this is not obvious in the
transmission electron micrographs. The presence of a thin
outer Nb2O5 base layer, free from tantalum species, above a
layer containing units of Ta2O5 and Nb2O5 is disclosed in
GDOES depth profiles (Fig. 4). The outer layer appears to
thicken with the niobium content in alloy. The total
sputtering time of the anodic films also increases with the
niobium content, and that for the Ta–87 at.% Nb alloy
(Fig. 4e) is approximately twice that for the Ta–12 at.% Nb
alloy (Fig. 4a). Since the thickness of the former anodic
film is only 1.33 times that of the latter, the sputtering rate
of the anodic films may be reduced with an increase in the
niobium content. It is clear from Fig. 4 that boron species
from the electrolyte are incorporated into the outer part of
the films. The distribution of the boron species, estimated
from the sputtering time, is not dependent upon the film
composition, the boron being located in the outer ~0.2 of
the film thicknesses. These depths are similar to that on
niobium (0.15) [37]. The peak intensity of boron relative to
the oxygen intensity in the anodic films decreases with
increase in the niobium content in alloy, suggesting that the
amount of boron species in the anodic films decreases with
the niobium content. Due to the absence of suitable boron
standard materials for quantification, the actual boron
concentrations in the anodic films have not been analyzed.

Apart from boron species, the compositions of the
anodic films have been examined quantitatively using
RBS. In the RBS analysis, boron species were neglected
due to low sensitivity for boron. Examples of experimental
and simulated RBS spectra for the as-deposited and
anodized Ta–43 at.% Nb specimens are shown in Fig. 5.
Figure 5b reveals the shift of the leading edge for tantalum
to a lower energy after anodizing, in agreement with the
presence of an outer tantalum-free Nb2O5 layer. As in
Fig. 5, the simulated spectra for all the specimens fitted
well with the respective experimental ones, and the
compositions, thicknesses, and densities of anodic films,
obtained by RBS, are summarized in Table 1. Two-layered
anodic films form on all the alloys, with the relative
thickness of the outer Nb2O5 layer decreasing with
reducing niobium content in alloy. Even on the Ta–87 at.
% Nb alloy, the thickness of the outer layer relative to the
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total film thickness is less than 0.07. The inner layer
contains both units of Ta2O5 and Nb2O5, and the ratio of
tantalum to niobium in the inner layer is slightly higher
than that in the respective alloy substrate due to the ejection
of Nb2O5 to form the outer layer. The growth of anodic
oxides at high current efficiency was also confirmed from
the fact that the charge passed during anodizing was close
to that calculated from the amounts of pentavalent niobium
and tantalum ions in the anodic films. The linear change in
density, D, of the inner layer of anodic oxides with alloy
composition (composition of inner layer) is displayed in
Fig. 2c.

Dielectric properties

The dielectric properties of anodic films have been
examined by AC impedance. Figure 6 shows the Bode

diagrams of the tantalum, Ta–43 at.% Nb, and niobium
specimens anodized to 80 V. All the specimens show a
linear impedance change with frequency over a wide
frequency range with a slope close to 90° and phase shift
of nearly −90° in the intermediate frequency range, which
are typical of dielectric materials. The other alloy speci-
mens anodized to 80 V also revealed similar impedance
spectra.

Using the equivalent circuit shown in Fig. 6, the
capacitances of the anodic films were determined. Although
a thin outer layer of Nb2O5 is present on all the alloys, the
two-layered structure of the films could not be identified by
the impedance spectra due to similar time constants for the
outer and inner layers. Thus, the single-layer model was
used to fit the impedance spectra. The compositional
dependence of the capacitance of the anodic films, together
with the film thickness and permittivity, is plotted in Fig. 7.
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(e)Fig. 3 Transmission electron

micrographs of ultramicrotomed
sections of the anodic oxide
films formed on the magnetron-
sputtered a Ta, b Ta–12 at.%
Nb, c Ta–43 at.% Nb, d Ta–
87 at.% Nb, and e Nb films to
80 V at 50 Am−2 in
0.1 mol dm−3 ammonium pen-
taborate electrolyte at 293 K
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In all cases, a linear correlation is revealed. The following
relation holds between the capacitance, Cp, film thickness,
d, and permittivity, εox:

Cp ¼ "0"oxS=d

in which ε0 is the permittivity of vacuum and S is the
surface area. The increase in Cp with niobium content
indicates that the increase in εox is larger than the
thickening of the anodic oxide by the addition of niobium.

Field crystallization

As shown in Fig. 3, the anodic films formed on Ta–Nb
alloys as well as tantalum and niobium are amorphous, but
field crystallization of amorphous anodic oxides has been
reported for anodic Ta2O5 and Nb2O5 at high voltages in
electrolytes at elevated temperatures [11, 12, 34–36, 38–
43]. The field crystallization is detrimental for capacitor
applications due to degradation of the electric properties:
increased leakage current and dielectric dissipation factor
[44]. Here, the compositional dependence of the behavior
of field crystallization of anodic oxides on the Ta–Nb alloys
has been investigated at 100 V in 0.1 mol dm−3 ammonium
pentaborate electrolyte at 333 K. Figure 8a shows the
current transients during anodizing of the Ta–Nb alloys as
well as tantalum and niobium at 100 V for 3.6 ks. Figure 9
shows the SEM surface images of the resultant anodic
films. The current transients (Fig. 8a) reveal a linear current
decrease with time in a double logarithmic plot, as expected
from the high-field film growth kinetics [45]. However, the
current increases for niobium after anodizing for ~1 ks. The
change in behavior is associated with field crystallization,
and crystallized circular regions are evident in Fig. 9e. The
Ta–87 at.% Nb alloy also shows a slight deviation from the
linear current decrease, and Fig. 9d shows the presence of
crystalline regions. The size of the regions on the Ta–87 at.
% Nb alloy is smaller than that on niobium, and their
population density is also reduced on the alloy. Thus, the
deviation in the current transient is much smaller for the
Ta–87 at.% Nb alloy than for niobium. The other alloys and
tantalum showed a continuous linear decay of current, but
crystalline regions are also present on the Ta–70 at.% Nb
alloy, although the regions are of much smaller size and of
lower population density. No field crystallization was found
for anodizing under the present conditions when the
tantalum content is further increased. The findings indicate
that the susceptibility to field crystallization increases with
increase in the niobium content in alloy.
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Fig. 5 a Experimental and simulated RBS spectra of the magnetron-
sputtered Ta–43 at.% Nb alloy film anodized to 80 V at 50 Am−2 in
0.1 mol dm−3 ammonium pentaborate electrolyte at 293 K. b Tantalum
yield region of experimental and simulated RBS spectra of the
magnetron-sputtered Ta–43 at.% Nb alloy film as deposited and
anodized to 80 V at 50 Am−2 in 0.1 mol dm−3 ammonium pentaborate
electrolyte at 293 K

Table 1 Results of RBS analy-
ses for anodic oxide films
formed on the magnetron-
sputtered Ta–Nb alloys to 80 V
at 50 Am−2 in 0.1 mol dm−3

ammonium pentaborate
electrolyte at 293 K

Alloy composition Anodic oxide film

Thickness (nm),
outer layer/inner layer

Composition, outer
layer/Inner layer

Density (Mg m−3), outer
layer/inner layer

Ta 125 Ta2O5 7.3

Ta–12 at.% Nb 2.5/128 Nb2O5/(Ta0.89Nb0.11)2O5 4.2/6.6

Ta–22 at.% Nb 3/132 Nb2O5/(Ta0.80Nb0.20)2O5 4.2/6.4

Ta–43 at.% Nb 4/144 Nb2O5/(Ta0.59Nb0.41)2O5 4.2/5.8

Ta–70 at.% Nb 8/155 Nb2O5/(Ta0.31Nb0.69)2O5 4.2/5.0

Ta–87 at.% Nb 12/168 Nb2O5/(Ta0.14Nb0.86)2O5 4.2/4.5

Nb 186 Nb2O5 4.2
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It is known that the air-formed oxide or thermal oxide
that is present on the surface before anodizing becomes an
initiation site of field crystallization of anodic Nb2O5. Thus,
prior thermal treatment enhances the field crystallization
[41]. Figure 8b shows the current transients of the speci-
mens with prior thermal treatment at 523 K during
anodizing at 100 V. As in the previous study, the deviation
from the linear current decrease is more marked for the
niobium specimen thermally treated at 523 K, and a higher
population density of crystalline regions is found on the
surface of the anodic film by SEM observation (Fig. 10e).
However, no significant influence of prior thermal treat-
ment on the current transient is observed for the Ta–Nb
alloys as well as tantalum. In fact, the surfaces of the
tantalum and Ta–43 at.% Nb specimens subjected to prior
thermal treatment are smooth after anodizing and no
obvious evidence of crystallization is found (Fig. 10a, b). Clear acceleration of field crystallization by the prior

thermal treatment is revealed only for niobium. However,
a slight acceleration may occur for the Ta–87 at.% Nb alloy
since the population density of the crystalline regions
appears to be increased by the prior thermal treatment.

Discussion

In the present study, the compositional dependence of the
properties of anodic films, such as formation ratio, density,
and permittivity, has been examined on the Ta–Nb single-
phase alloys. These parameters change linearly with alloy
composition between the values of anodic Ta2O5 and
Nb2O5. The finding is characteristic for amorphous anodic
oxides on binary alloys. A similar compositional depen-
dence was reported for amorphous oxide films on Al–Ta
[46–48] and Al–Hf [49] alloys. The compositional depen-
dence of the properties of “mixed” amorphous oxides
contrasts with that of crystalline anodic oxides formed on
binary alloys. Typical examples that show a marked
enhancement of the capacitance at particular compositions
for Zr–Si and Zr–Al alloys have been reported recently [50,

Fig. 8 Current transient during anodizing of the a as-deposited and b
thermally treated Ta, Ta–Nb alloys, and Nb films at 100 V in
0.1 mol dm−3 ammonium pentaborate electrolyte at 333 K. The
thermal treatment was carried out in air at 523 K for 3.6 ks
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51]. The precipitation of nanocrystalline tetragonal ZrO2

phase with high permittivity enhances the permittivity of
the anodic oxide and the resultant enrichment of silicon or
aluminum species in the surrounding amorphous matrix
reduces the film thickness.

A two-layered anodic film is formed on the Ta–Nb
alloys, comprising a thin outer Nb2O5 layer and an inner
layer containing both units of Ta2O5 and Nb2O5. Amor-
phous anodic oxides, including Ta2O5 and Nb2O5, grow
both at the metal/film and film electrolyte interfaces by a
cooperative transport of O2− ions inward and cations
outward, respectively. The transport number of cations is
similar for anodic Ta2O5 and Nb2O5 [9]; under the present
anodizing conditions, the transport number of cations is 0.3
for anodic Nb2O5 [52], and a similar value is expected from
the change in the transport number of cations with current
density for anodic Ta2O5 [53]. In this case, in the present
anodic films on the Ta–Nb alloys, both Nb5+ and Ta5+ ions
migrate outward, with the greater rate for the former
cations. The slower migration of Ta5+ ions with respect to

Nb5+ ions is correlated with the stronger Ta5+–O bond
(347 kJ mol−1) compared with the Nb5+–O bond
(329 kJ mol−1). The good correlation between the relative
migration rates of the two cations and their metal–oxygen
bond strengths has been found for many amorphous anodic
oxides formed on binary alloys, including Al–Ta, Al–Zr,
Al–Hf, Al–Sm, Al–Mo, Al–W, Ti–W, Ti–Mo, Ti–Si, and
Nb–Si alloys [47, 49, 52, 54–63]. The correlation suggests
the importance of breakage of the metal–oxygen bonds in
the ionic transport in growing amorphous anodic oxides
under the high electric field. As a consequence of the bond
breakage, counter-migration of cations and anions occurs.
Several models of ionic migration have been proposed,
ranging from early suggestions of vacancy diffusion and
interstitial exchange capture [3] and a place exchange
mechanism [8] to a liquid droplet mechanism [10]. A more
recent defect cluster mechanism correlates the transport
number of cations and field strength [64].

The relative migration rate of Ta5+ ions, with respect to
Nb5+ ions, is calculated from the number of Nb5+ ions in

(a)

(b)

(c)

(d)

(e)

Fig. 9 Scanning electron micro-
graphs of the surfaces of the
magnetron-sputtered a Ta, b
Ta–43 at.% Nb, c Ta–70 at.%
Nb, and d Ta–87 at.% Nb and e
Nb films anodized at 100 V in
0.1 mol dm−3 ammonium
pentaborate electrolyte
at 333 K for 3.6 ks
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the region of inner layer above the marker plane to the total
number of Nb5+ ions in the entire film region above the
marker plane, which is assumed to be with depth of 0.3 of
the total film thickness. The calculation revealed that the
migration rate of Ta5+ ions was ~0.75 that of Nb5+ ions,
regardless of alloy composition. The Ta5+ ions also migrate
slower than Al3+ ions in the anodic films on Al–Ta alloys,
with the relative Ta5+ migration rate increasing with
tantalum content [47, 48]. The enhanced relative migration
rate of Ta5+ ions was explained by the increased Lorentz
field. The Lorentz field in anodic Ta2O5 is approximately
twice that of anodic Al2O3, while the field of anodic Nb2O5

is only ~1.2 times that of anodic Ta2O5. The composition-
independent relative migration rate of Ta5+ ions in the
present anodic films may be due to the relatively small
change in the Lorentz field with film composition.

No field crystallization of the anodic oxide occurred on
tantalum at 100 V in 0.1 mol dm−3 ammonium pentabrate
electrolyte at 333 K, whereas crystalline oxide is formed on
niobium under the same anodizing conditions. The
niobium-rich Ta–Nb alloys also suffered field crystalliza-

tion. The finding indicates a higher susceptibility of
field crystallization of anodic Nb2O5 compared with
anodic Ta2O5. For complete suppression of field crystal-
lization under the present condition, more than 30 at.%
tantalum must be added to niobium, while for silicon
addition as an alloying element to niobium, 12 at.% is
sufficient [43]. Field crystallization is also known for
anodic TiO2 [65–67]. Alloying of titanium also impedes
the crystallization, and it has been found that the more
slowly migrating or immobile alloying element species
suppress more effectively the field crystallization of
anodic TiO2 [68]. Ta5+ ions migrate outward at a slightly
slower rate than Nb5+ ions, as discussed above, while
silicon species are immobile. Thus, it is likely that also for
field crystallization of anodic Nb2O5, incorporation of
more slowly migrating or immobile species impedes the
crystallization more effectively.

Prior thermal treatment of niobium accelerates the field
crystallization of anodic Nb2O5 [41], as also confirmed in
the present study. Compared with anodic Nb2O5, the
acceleration is limited for anodic oxides on niobium-rich

(a)

(b)

(c)

(d)

(e)

Fig. 10 Scanning electron
micrographs of the surfaces of
the magnetron-sputtered a Ta, b
Ta–43 at.% Nb, c Ta–70 at.%
Nb, and d Ta–87 at.% Nb and e
Nb films thermally treated in
air at 523 K for 3.6 ks and
subsequently anodized at 100 V
in 0.1 mol dm−3 ammonium
pentaborate electrolyte
at 333 K for 3.6 ks
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Ta–Nb alloys, and no crystallization is evident for the
tantalum-rich alloys. The oxide formed by the prior thermal
treatment becomes a nucleation site of crystalline oxide so
that field crystallization is accelerated. The presence of both
units of Ta2O5 and Nb2O5 in the thermal oxide films on the
Ta–Nb alloys was confirmed by X-ray photoelectron
spectroscopy and the “mixed oxides” might be more
resistive for nucleation of crystalline oxides compared with
thermally formed Nb2O5.

Conclusions

1. Anodizing of magnetron-sputtered Ta–Nb alloys of a
range of compositions in ammonium pentaborate
electrolyte at high current efficiency results in the
formation of two-layered amorphous anodic films,
comprising a thin outer relatively pure Nb2O5 layer
and an inner layer consisting of both units of Ta2O5 and
Nb2O5.

2. The films grow by migration of cations and anions,
with slower migration of Ta5+ ions relative to Nb5+

ions, leading to two-layered films. The migration rate
of Ta5+ ions is ~0.75 that of Nb5+ ions, regardless of the
alloy composition, and the slower migration of Ta5+

ions correlates with the stronger Ta5+–O bond relative
to the Nb5+–O bond. Boron species, incorporated from
electrolyte, are present in the outer ~20% of the film
thickness; such species also migrate outward.

3. The film properties, i.e., formation ratio, density, and
permittivity, change approximately linearly with alloy
composition.

4. Susceptibility to field crystallization of the anodic film
increases with increase of niobium content of the alloy.
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